Indian Statistical Institute, Bangalore

M. Math First Year

First Semester - Measure Theory

Semestral Exam Maximum marks: 60 Date: January 07, 2022 Duration: 3 hours

Answer all questions and all questions carry equal marks.

- 1. Let X be an uncountable set and \mathcal{A} be the collection of subsets A of X such that A or $X \setminus A$ is countable. Prove that \mathcal{A} is a σ -algebra and the smallest σ -algebra containing the singletons. Determine all measurable functions on X.
- 2. Let A and B be two subsets of \mathbb{R} such that $\inf\{|a-b| \mid a \in A, b \in B\} > 0$. Prove that $m^*(A \cup B) = m^*(A) + m^*(B)$ where m^* is the Lebesgue outer measure on \mathbb{R} .
- 3. Let (X, \mathcal{A}, μ) be a measure space and $\mu(X) = 1$. Prove that for $1 \leq r < s \leq \infty$, $L^s \subset L^r$.
- 4. Let *m* be the Lebesgue measure on \mathbb{R} . For a Lebesgue integrable function *f* on \mathbb{R} , prove that

$$m \times m(\{(x,y) \mid 0 \le y \le f(x)\}) = \int f(x)dm(x) = \int_0^\infty \phi(t)dm(t)$$

where $\phi(t) = m(\{x \mid f(x) \ge t\}.$

5. Let $\nu_j \ll \mu_j$ be σ -finite measures on (X_j, \mathcal{A}_j) for j = 1, 2. Then $\nu_1 \times \nu_2 \ll \mu_1 \times \mu_2$ and for a.e. $(x, y) \in X_1 \times X_2$, $\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x, y) = \frac{d\nu_1}{d\mu_1}(x)\frac{d\nu_2}{d\mu_2}(y)$.